бесплатно по России 8 800 700-14-31
КАТАЛОГ

Специальные предложения
на фирменные материалы
«ИНФРАХИМ-АНТИКОР»®

Особенности термодиффузионного цинкования металлоизделий в электромагнитном поле (ТДЦЭ)

22.03.2013

Особенности термодиффузионного цинкования металлоизделий в электромагнитном поле (ТДЦЭ)

Одним из наиболее распространенных способов защиты от коррозии металлоизделий является их оцинковка. Объясняется это тем обстоятельствам, что цинк имеет стационарный потенциал, 0,2-0,3 мВ более отрицательный, чем у железа. При воздействии электролитов, содержащихся в агрессивных средах морской или промышленно-городской атмосферах, а также во влагонасыщенных бетонах, цинковое покрытие медленно растворяется за счет электрохимических реакций, защищая, тем самым, ферритную подложку. Таким образом, цинковое покрытие выполняет роль протектора, «размазанного» по поверхности защищаемой стальной конструкции.

Цинковое покрытия сравнительно дешевы и обеспечивают длительную противокоррозионную защиту стальной подложки. Наибольшее распространение в практике защиты от коррозии металлоизделий нашли следующие методы цинкования: гальваническое, «горячее» из расплава цинка, газотермическое цинкование напылением, «холодное» путем окраски металлоизделий цинкнаполненными красками, термодиффузионное цинкование. Рассмотрим преимущества и недостатки данных методов.

Гальваническое цинкование, по причине получения слишком тонких покрытий и формирования покрытия в специальных малоемких ваннах, неприемлемо для защиты крупногабаритных металлических конструкций. Подготовка стальной поверхности под гальваническое цинкование производится экологически опасным методом химического травления в кислотах, что может увеличить риск наводороживания металла, способствующего непредсказуемому хрупкому разрушению ответственных металлоконструкций, работающих в сложном состоянии.

Способ горячего цинкования заключается в окунании предварительно очищенных химическим способом (травлением в кислоте) металлоизделий в ванну с расплавом цинк-алюминевого сплава при температуре 460-480 оС с выдержкой в течение 10-15 минут.

Достоинства горячего цинкования

  • Сравнительная простота, низкая стоимость и технологичность операций по цинкованию;
  • Сравнительно высокая защитная способность и долговечность, определяемая выбранной толщиной покрытия от 30 до 300 мкм при скорости коррозионного износа покрытия, равной 2-3 мкм в год в умеренно холодном климате в неагрессивных средах;
  • Горячее цинковое покрытие в принципе не подлежит последующему окрашиванию, за исключением поверхностей, требующих декоративной окраски.

Недостатки горячего цинкования

  • Сложность и экологическая опасность подготовки поверхности под покрытие травлением, а также риск новодораживания;
  • Необходимость постоянного круглосуточного поддержания температуры расплава цинка, что требует значительного расхода энергетических затрат;
  • Неравномерность толщины покрытия на цинкуемой поверхности, образование наплывов (при вынимании конструкций из ванны с вязким расплавом) на нижних кромках и в отверстиях, что требует проведения последующих дорогостоящих работ по зачистке цинкового покрытия в местах прилегания монтажных поверхностей;
  • Сравнительно низкая адгезивная связь с подложкой;
  • Значительные технологические потери дорогостоящего цинка, проявляющиеся при образовании соединения цинка с железом в ванне расплава (так называемый, гартцинк, до 1/3 от количества потребляемого цинка);
  • Существующие ванны горячего цинкования позволяют оцинковывать металлоконструкции длиной до 11 м, обычно применяются для оцинковки строительных изделий в виде перил, дорожных ограждений, электрических фонарей, молниеотводов и тому подобных конструкций;
  • Высокая начальная затратная стоимость организации участка горячего цинкования, достигающая 10 млн долларов США;
  • Во многих регионах России (Сибири, Дальний Восток) участки горячего цинкования вообще отсутствуют;
  • Необходимость дополнительной поверхности или искусственное ее старение под окрашивание, что также удорожает производство.

Газотермическое и термодиффузионное цинкование

При газотермическом цинковании напыление наносится на конструкции, элементы и их детали, форма поверхности которых позволяет направить на нее струю распыляемого металла под углом 90-45 градусов. Способ пригоден для нанесения покрытия на изделия любых габаритов, мобилен. Стоимость нанесения таких покрытий в 3-4 раза дороже цинкования с помощью других методов, в результате газотермического цинкования получается неравномерная толщины покрытия на цинкуемой поверхности, сложность контроля за выполнением работ и получения покрытия, которое соответствует нормативным документам, узкие зазоры (< 20 мм) глубокие отверстия (глубина > 50 мм), карманы и другие недоступные для напыления места недопустимы (согласно ГОСТ 28302-89), необходимо применять меры предупреждающие деформацию конструкций и изделий.

В последние годы традиционный метод получения термодиффузионных покрытий (ТДЦ) был усовершенствован и убраны недостатки метода, путем замены радиационного нагрева реторт с цинкуемыми деталями на индукционный нагрев. В предлагаемом способе термодиффузионного цинкования в электромагнитном поле — ТДЦЭ (патент на изобретение № 2424351 «Способ нанесения цинкового покрытия и установка для его осуществления») реторта помещается внутрь камеры с индуктором. В связи с тем, что находящаяся внутри реторты шихта является парамагнитным и мелкодисперсионным материалом, она практически прозрачна для электромагнитных волн, генерируемых индуктором, следовательно, нагрев шихты происходит за счет конвективной передачи тепла от корпуса реторты и цинкуемых изделий. В отличие от шихты, цинкуемые металлоизделия ферромагнитны. В результате в изделиях, помещенных в магнитное поле индуктора, возникают вихревые токи, которые нагревают изделия до температур 500-800 оС внутри объема реторты. Процесс термохимической диффузии сокращается в десятки раз, поскольку разогрев деталей происходит за 25-30 минут в зависимости от величины подводимой электрической мощности, магнитных свойств и толщины материала реторты, а также массы обрабатываемых изделий.

Структура покрытия практически состоит из  α- и δ-фазы, прослойка Г-фазы, снижающая качество покрытия, ничтожно мала. Содержание цинка в верхнем слое покрытия толщиной 60 мкм достигает 98%.

Требуемая толщина покрытия регулируется временем прогрева, заданной температурой цинкования, характеристикой сортамента металлоизделий, загружаемых в реторту, и составом шихты.

Рассмотрим еще одну важную особенность предлагаемого способа термодиффузионного цинкования. Использование индукционного нагрева позволяет, в отличие от способа традиционной термодиффузии с радиационном нагревом, формировать однородный цинковый слой требуемой толщины за счет токов индукции и тепла, идущего изнутри цинкуемой детали, происходит полный переплав старого и последующего слоев цинка. Таким образом, использование индукционного обогрева позволяет, в отличие от других способов цинкования, восстанавливать цинковое покрытие, если его толщина недостаточна или если оно повреждено.

Резюмируя все вышесказанное, к достоинствам метода термодиффузионного цинкования в электромагнитном поле (ТДЦЭ) можно отнести следующее:

  • Детали цинкуются в герметически закрытых ретортах, поэтому процесс диффузионного цинкования экологически безопасен и не требует создания очистных сооружений;
  • Получаемое покрытие не имеет пори за счет диффузионного слоя имеет прочную адгезионную связь с подложкой, т.к. покрытие представляет собой многослойный набор интерметалидов, в том числе проникшие в тело подложки, что очень важно при защите металлоизделий, используемых в «тяжелых» условиях, например в ледовой обстановке, перепадов температур;
  • Метод позволяет осуществлять упрочнение изделий и ремонтные работы по восстановлению поверхностного слоя изделий;
  • Защитная способность покрытия многократно выше, чем у гальванических, и выше, чем у покрытий, образованных методом горячего цинкования;
  • Толщина покрытия может быть любой (по техническому заданию заказчика) и зависит от времени выдержки цинкуемых деталей в печи и используемой рецептуры смеси;
  • Диффузионный цинк покрывает детали равномерным слоем без наплывов, точно повторяя профиль цинкуемой поверхности, обеспечивая равномерную толщину с точностью воспроизведения профиля от 10 до 300 мкм, любым необходимым слоем, на любом необходимом участке без наплывов, включая элементы сложной конфигурации, резьбовые соединения (при покрытии данных изделий от 10 до 30 мкм), возможность выборочного покрытия участков, включая глухие отверстия, элементы сложной конфигурации, щели, полости, резьбу т.п.;
  • Метод позволяет, в отличие от других, оцинковывать длинномерные трубы с обеих сторон, а при необходимости покрывать только внутреннюю или только наружную поверхность труб, в зависимости от размещения порошковых цинк-содержащих смесей – снаружи или внутри труб;
  • Отходы производства не требуют захоронения и могут быть использованы в качестве наполнителей строительных бетонных смесей;
  • Диффузионное цинковое покрытие сертификатом Госсанэпиднадзора № 78.1.3.315.П.17512.9.99 от 06.09.1999 допущено к контакту с водой питьевого и бытового водоснабжения.

Особенно подробно отметим роль метода и необходимость применения метода ТДЦЭ (основываясь на ранее изложенном) в областях, где применяются железобетонные конструкции (ледостойкие морские платформы, гидротехнические сооружения и пр.). железобетонные конструкции, несмотря на высокие прочностные показатели, в процессе эксплуатации склонны к разрушению. Объясняется это тем, что бетоны имеют достаточно пористую структуру, которая активно поглощает влагу. И хотя при насыщении бетон становится прочнее, при отрицательных температурах проникшая в бетон вода, замерзая и расширяясь, образует трещины в монолитной структуре.

Возросшее в последние годы содержание углекислого газа в атмосфере приводит также к карбонизации бетона. Содержащаяся в материале известь (гидроксид кальция) превращается в карбонат кальция, снижается показатель рН, т.е. повышается кислотность среды внутри бетона, благодаря чему начинается интенсивная коррозия поверхности стальных конструкций, соприкасающихся с бетоном. Также пористость и появление и появление трещин в бетоне облегчает поступление влаги, воздуха и агрессивных веществ из окружающей среды к поверхности арматуры, вследствие чего ее пассивное состояние в местах расположения трещин нарушается, в результате нарушения ее пассивности, вызываемого уменьшением щелочности до рН < 12, возникает коррозия стали, снижается сцепление арматуры с бетоном. Ржавчина, формирующаяся при окислении стали, имея объема в 14 раз больший, чем монолитный металл, повышает внутреннее давление в бетоне и приводит к разломам бетона и оголению стальных конструкций. Оголенный металл еще стремительнее корродирует, способствуя дальнейшему разрушению бетона. Скорость карбонизации может достигать от 1 до 6 мм в год.

Хлориды, содержащиеся в морской атмосфере и в агентах-антиобледенителях, также способствуют разрушению бетона, так и стальной арматуры. Поскольку процессы карбонизации, а также воздействие хлоридов и сульфатов неизбежны, представляется целесообразным нанести на стальные, омоноличиваемые стальные мостовые конструкции защитные покрытия, препятствующие разрушению.

В соответствии с рекомендациями ГОСТ 31384-2008 (Приложения Е и И) и СНиП 2.03.11-85 бетонируемые стальные конструкции должны быть защищены от коррозии. Стальные строительные детали рекомендуется перед закладкой в бетон металлизировать путем горячего цинкования в расплаве, газотермического напыления, термодиффузионного цинкования, а также методом «холодного цинкования» цинкнаполненными красками. Толщина цинкового покрытия должна быть не менее 100-120 мкм, чтобы исключить пористость металлического слоя и снизить интенсивность растворения цинка. Поскольку работы по металлизации напылением на поверхности закладной арматуры представляются весьма трудоемкими, наиболее технологичным способом их оцинковки может служить термодиффузионное цинкование (ТДЦ) в специальных ретортах, позволяющих оцинковывать длинномерные изделия длиной до 12 м. метод ТДЦ может быть усовершенствован за счет обогрева цинкуемых изделий электроиндуктивным методом (ТДЦЭ), что на порядок интенсифицирует и ускоряет процесс оцинковки и повышает качество обрабатываемого изделия.

Технология ТДЦЭ и покрытие соответствуют нормативным документам:

  • ГОСТ Р 9.316-2006 «Покрытия термодиффузионные цинковые. Общие требования и методы контроля;
  • ГОСТ Р 51163-98 «Покрытия термодиффузионные цинковые для крепежных и других мелких изделий»;
  • РД «Покрытия цинковые для стальных изделий морской техники. Технологический процесс нанесения цинковых покрытий термодиффузионным способом в электромагнитном поле» ГКЛИ 3240-0392012;
  • РД «Покрытия цинковые защитные стальных труб судовых систем. Технические требования. Типовой технологический процесс». РД 5.95027-88;
  • СТО 02494680-0034-2004 «Покрытия защитные термодиффузионные цинковые на элементах металлических конструкций и крепежных изделиях. Общие технические условия» Стандарт организации ЦНИИ ПСК им. Мельникова.

В настоящее время разработан новый инновационный способ (Патент на изобретение № 2424351) нанесения термодиффузионных цинковых покрытий (и др. покрытий), создана установка в результате исполнения государственной программы по развитию гражданского флота ОКР «Термодиффузия», прошли предусмотренные программой испытания на коррозионную стойкость, механическую прочность и стойкость к абразивному износу. Установка позволяет производить термодиффузионное цинкование в электромагнитном поле длинномерных металлоконструкций с производительностью до 20 т/час (в зависимости от конструктивных особенностей изделий).

Данная установка способна на промышленном уровне решать задачи коррозионной защиты металлоконструкций. Что значительно расширяет возможности и границы использования инновационного способа – термодиффузионного цинкования в электромагнитном поле (ТДЦЭ) металлоизделий.

Сравнительный анализ характеристик цинковых защитных покрытий 

Характеристики цинковых покрытий
Горячее цинкование
ТДЦ
ТДЦЭ
Фазовый состав
α-фаза
Fe21Zn
Fe21Zn
Fe21Zn
γ-фаза
Fe3Zn10
Fe3Zn10
Fe3Zn10
σ-фаза
FeZn11
FeZn12
FeZn7
ζ-фаза
FeZn13
 
 
η-фаза
Zn, ZnO
ZnO
 
Плотность поверхностного слоя, г/см3
 
7,13
 
7,22
 
7,25
Микротвердость поверхностного слоя, МПа
 
350
 
3470
 
3830
Средняя скорость изменения удельной массы образца, г/(см2/ч)
 
-7,5·10-7
 
-5·10-7
 
-4·10-7

Фото: Установка термодиффузионного цинкования

Установка ТДЦЭ


По материалам журнала «ЛКМ Лакокрасочные материалы и их применение»

Другие публикации

Целевые добавки для лакокрасочных материалов
Целевые добавки для лакокрасочных материалов
Добавки повышают общие свойства лакокрасочной композиции, такие: как адгезия, абразивостойкость, пленкообразование, эстетичность, растекание, стабильность при хранении, прочность пленки и т.д....